![Very Happy :-D](https://www.hkbf.org/images/smilies/icon_biggrin.gif)
![圖檔](http://i1042.photobucket.com/albums/b424/JE1695/f4maths-1.jpg)
(t#466387)
板主: 葵芳站總站站務助理員
brianlhm :記住log(x^a)=a log x
當你轉晒做log x個時,你就會計到
JN568@80K :brianlhm :記住log(x^a)=a log x
當你轉晒做log x個時,你就會計到
我知,但係我最後都係計唔到一個整數
第一條我計到-5/6 log x...
第二條我計到6n+3...
但係兩題既答案係3/8 and 9
JY4066 :1.
Rafael Chicharito :2.
=[ (n-1)log x + (2-n) log x ]/ (1/3) log x
= [del]3[/del] log x / (1/3) log x
=[del]9[/del]3
JN568@80K :唔該哂版友![]()
BTW你用咩software黎打?好靚~
Utopia@TMS~ :I don't think the answer of Q.2 is 9, it should be 3.Rafael Chicharito :2.
=[ (n-1)log x + (2-n) log x ]/ (1/3) log x
= [del]3[/del] log x / (1/3) log x
=[del]9[/del]3
JN568@80K :Utopia@TMS~ :I don't think the answer of Q.2 is 9, it should be 3.Rafael Chicharito :2.
=[ (n-1)log x + (2-n) log x ]/ (1/3) log x
= [del]3[/del] log x / (1/3) log x
=[del]9[/del]3
師兄想問下(n-1)log x+(2-n)log x點變?
小弟唔係幾明..
thx
JN568@80K :師兄想問下(n-1)log x+(2-n)log x點變?
正在瀏覽這個板面的使用者:沒有註冊會員 和 7 位訪客